Effects of Nitrogen and Phosphorus Fertilization on Soil Carbon Fractions in Alpine Meadows on the Qinghai-Tibetan Plateau

نویسندگان

  • Jin Hua Li
  • Yu Jie Yang
  • Bo Wen Li
  • Wen Jin Li
  • Gang Wang
  • Johannes M. H. Knops
چکیده

In grassland ecosystems, N and P fertilization often increase plant productivity, but there is no concensus if fertilization affects soil C fractions. We tested effects of N, P and N+P fertilization at 5, 10, 15 g m-2 yr-1 (N5, N10, N15, P5, P10, P15, N5P5, N10P10, and N15P15) compared to unfertilized control on soil C, soil microbial biomass and functional diversity at the 0-20 cm and 20-40 cm depth in an alpine meadow after 5 years of continuous fertilization. Fertilization increased total aboveground biomass of community and grass but decreased legume and forb biomass compared to no fertilization. All fertilization treatments decreased the C:N ratios of legumes and roots compared to control, however fertilization at rates of 5 and 15 g m-2 yr-1 decreased the C:N ratios of the grasses. Compared to the control, soil microbial biomass C increased in N5, N10, P5, and P10 in 0-20 cm, and increased in N10 and P5 while decreased in other treatments in 20-40 cm. Most of the fertilization treatments decreased the respiratory quotient (qCO2) in 0-20 cm but increased qCO2 in 20-40 cm. Fertilization increased soil microbial functional diversity (except N15) but decreased cumulative C mineralization (except in N15 in 0-20 cm and N5 in 20-40 cm). Soil organic C (SOC) decreased in P5 and P15 in 0-20 cm and for most of the fertilization treatments (except N15P15) in 20-40 cm. Overall, these results suggested that soils will not be a C sink (except N15P15). Nitrogen and phosphorus fertilization may lower the SOC pool by altering the plant biomass composition, especially the C:N ratios of different plant functional groups, and modifying C substrate utilization patterns of soil microbial communities. The N+P fertilization at 15 g m-2 yr-1 may be used in increasing plant aboveground biomass and soil C accumulation under these meadows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai-Tibetan Plateau

High soil organic carbon content, extensive root biomass, and low nutrient availability make alpine grasslands an important ecosystem for assessing the influence of nutrient enrichment on soil respiration (SR). We conducted a four-year (2009-2012) field experiment in an alpine grassland on the Qinghai-Tibetan Plateau to examine the individual and combined effects of nitrogen (N, 100 kg ha-1year...

متن کامل

Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau unde...

متن کامل

Effect of Degradation Intensity on Grassland Ecosystem Services in the Alpine Region of Qinghai-Tibetan Plateau, China

The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment class...

متن کامل

Warming impacts on carbon, nitrogen and phosphorus distribution in soil water-stable aggregates

Guan S., An N., Liu J.H., Zong N., He Y.T., Shi P.L., Zhang J.J., He N.P. (2018): Warming impacts on carbon, nitrogen and phosphorus distribution in soil water-stable aggregates. Plant Soil Environ., 64: 64–69. A five-year (2010–2015) field experiment was conducted to investigate warming impacts on organic carbon (OC), total nitrogen (TN) and total phosphorus (TP) contents and their ratios in b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014